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A numerical method is presented for chemically reactive fluid flow in which equilibrium 
and nonequilibrium reactions occur simultaneously. The equilibrium constraints on the species 
concentrations are established by a quadratic iterative procedure. If  the equilibrium reactions 
are uncoupled and of second or lower order, the procedure converges in a single step. In 
general, convergence is most rapid when the reactions are weakly coupled. This can frequently 
be achieved by a judicious choice of the independent equilibrium reactions. In typical tran- 
sient calculations, satisfactory accuracy has been achieved with about five iterations per time 
step. 

I. INTR~DUCTI~N 

There is a great deal of current interest in reactive fluid dynamics, and in 
numerical techniques for solving the equations that govern it. One of the main 
obstacles to be overcome is the frequent occurrence in practical problems of chemical 
time scales that are very short in comparison to typical fluid dynamical characteristic 
times. The chemical rate equations then become “stiff” in character, and require 
special techniques for their solution [ 1,2]. A further difficulty is that reaction 
mechanisms, rate laws, and rate coefficients for fast reactions of practical interest are 
often not reliably known. Both of these difftculties may be circumvented by assuming 
that the fast reactions are always in equilibrium, while those reactions having time 
scales which are comparable to or longer than characteristic fluid dynamical times 
are treated kinetically. This situation may be referred to as partial equilibrium 
flow [3]. 

The concept of partial equilibrium flow is most useful in situations where each 
reaction may be classified as “fast” or “slow” independently of position and time. 
Whether or not this is possible will depend on the reaction rates and on the 
temperature and pressure extremes in the flow field. When such a simple 
classification is not possible, it will be necessary to supplement the partial 
equilibrium description with criteria for determining whether or not a given reaction 
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is essentially in equilibrium. Such criteria will necessarily be kinetic in nature, and 
will involve both the forward and reverse reaction rates. We shall not discuss the 
formulation or implementation of such criteria here; we simply assume that a 
decision has somehow been reached in advance as to which reactions are in 
equilibrium and which need to be treated kinetically. We caution the reader that if 
this decision is incorrectly made then the results of the calculation will be physically 
incorrect, even though the calculation may still be well behaved and produce results 
that look reasonable. 

It should also be emphasized that even when the partial equilibrium description is 
otherwise appropriate, it will always be incorrect during a short initial transient 
during which the partial equilibrium is established kinetically. Clearly, the partial 
equilibrium description is useful only in problems where the features of interest are 
insensitive to the details of this initial transient. If these details are of crucial impor- 
tance then the partial equilibrium description is not appropriate and a completely 
kinetic description must be used instead, at least during the initial transient interval. 

Alternative formulations of the governing equations for partial equilibrium flow 
have been presented elsewhere [3]. In this paper we present a numerical method for 
solving the so-called primitive governing equations [3], in which the progress rates 
for the equilibrium reactions are not given explicitly but are determined implicitly by 
the equilibrium constraint conditions. Our discussion will be restricted to ideal gas 
mixtures. The use of the method is illustrated by showing some results from a 
numerical simulation of the compression and power strokes of a single cylinder in an 
internal combustion engine. 

Our method establishes the equilibrium constraints by a quadratic iterative 
procedure. This procedure has been designed so that convergence is immediate if the 
equilibrium reactions are uncoupled and of second or lower order. In the general 
case, convergence is most rapid if the equilibrium reactions are selected so that the 
coupling between them is as weak as possible. No attempt is made to formulate 
general selection criteria, but the practical process of selecting nearly uncoupled 
reactions is illustrated within the context of the sample problem. 

The iteration is considered to have converged when all the equilibrium constraints 
are satisfied to within some specified tolerance. In transient calculations, we have 
found that 2% accuracy usually requires an average of about five iterations per time 
step on each cell of the finite-difference mesh. The rapid convergence is due in large 
part to the fact that (except perhaps at the beginning of the calculation) the starting 
conditions are relatively close to equilibrium, since they differ from the equilibrium 
state of the previous time step only by contributions of order At. 

The remainder of the paper is organized as follows. Section II summarizes the 
relevant primitive equations for partial equilibrium flow, specialized to the case of an 
ideal gas mixture. The numerical method for treating the equilibrium reactions is 
presented in Section III. In Section IV we present some results from a test calculation 
performed using the method in conjunction with the CONCHAS computer code [4]. 
It should be relatively easy to implement the method in other reactive fluid dynamics 
codes, since most of the necessary coding can be localized in a modular subroutine. 
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II. DIFFERENTIAL EQUATIONS 

The primitive governing equations for partial equilibrium flow have been 
summarized elsewhere [3]. Here we are concerned only with those equations that 
involve the chemical reactions directly. Attention is restricted to ideal gas mixtures. 

The continuity equation for species k is 

ap,,at + v * @/$I) = -v l J, + p;, (1) 

where pk is the mass of species k per unit volume, u is the fluid velocity vector, J, is 
the diffusional mass flux of species k, and 0: is the rate of change of pk due to 
chemical reactions. 

The chemical reactions occurring in the system are of two types: kinetic reactions, 
labeled by the index r, and equilibrium reactions, labeled by the index s. The kinetic 
reactions are collectively symbolized by 

k k 

where akr and b,, are dimensionless stoichiometric coefficients, and X, represents one 
mole of species k. Similarly, the equilibrium reactions are collectively symbolized by 

2 ‘ksxk 2 T  bksXk* 
k 

(3) 

The chemical mass exchange terms & are given by 

6 = Mk c (bkr - akr) (3r + Mk c @ks - aks) & 9 (4) 
r s 

where M, is the molecular weight of species k, U& is the rate of progress of kinetic 
reaction r, and ~5, is the rate of progress of equilibrium reaction s. The kinetic 
progress rates are determined by rate expressions of the form 

(5) 

where krr and k,, are the forward and backward rate coefficients, and the exponents 
d,, and ekr specify the order of the reaction. For elementary reactions dkr = akr and 
ekr = b,,. The equilibrium progress rates are determined implicitly by the equilibrium 
constraint conditions 

-P, = n @k/“k)bks’ 
k 
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where K;(T) is the concentration equilibrium constant for equilibrium reaction s, 
which depends only on the temperature T. 

The central problem to which this paper is addressed is how to determine the c3, so 
that the constraint conditions of Eq. (6) are satisfied within the framework of a time- 
marching numerical calculation. Since Eq. (6) is a system of coupled nonlinear 
equations, it is evident that some sort of iterative procedure will be required. One 
such procedure is developed in the next section. 

III. NUMERICAL METHOD 

We begin by combining Eqs. (1) and (4) to obtain 

where 

is the value that 8p,/at would have in the absence of the equilibrium reactions. In a 
time-marching numerical calculation, temporal derivatives are approximated by finite 
differences performed with reference to a sequence of discrete times t” (n = 0, 1,2,...). 
The superscript n is the time level, and the increment At” = t”+’ - t” is the time step. 
When At appears without a superscript, At” is understood. The numerical represen- 
tation of spatial derivatives will not be specified, as it is immaterial for present 
purposes. Such derivatives might be approximated by standard finite-difference 
techniques, finite element techniques, Galerkin methods, or in other ways. 

Perhaps the simplest temporal difference scheme that might be used to approximate 
Eqs. (9) and (6) is the following: 

P;+‘-P;= aP, * 
At c-1 

+ Mk 1 (bks - u/J c3: + l, 
atll s 

(11) 

Iq(T”) = 9:+‘/9;+1. (12) 

The rationale for this scheme is as follows. All of the terms contained in (8p,/t%), are 
explicitly known in terms of the dependent variables, and therefore may be evaluated 
at the previous time level n. The quantities ti,, on the other hand, are not explicitly 
known in terms of the other variables. They must therefore be evaluated at time level 
n + 1; otherwise the scheme would not contain r%:+i and could not be advanced in 
time. (The pressure must be evaluated at time level n t 1 in numerical calculations of 
incompressible flow for the same reason.) But now, in addition to the original N, 
unknowns pk (where N, is the number of chemical species), the scheme involves the 
N,, additional unknowns ti:+i (where Neq is the number of equilibrium reactions). 
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Since Eq. (11) represents only N, equations, it is necessary to evaluate at least the 
right member of Eq. (6) at time level n + 1 to obtain the additional Neg equations 
needed to close the system. Equations (11) and (12) then constitute N, + ZV,, 
equations in the N, + Neq unknowns pi+’ and @‘+I. 

It is convenient to define intermediate species densities P;, given by 

pk = p; + At@p,p2)lj. (13) 

The pk can be calculated explicitly and may therefore be regarded as known. 
Combining Eqs. (11) and (13), we obtain 

/I;+’ =p;, + Mkc (bks - aks)Awsv (14) 

where Aw, = 05:’ ’ At. Equation (14) now replaces Eq. (11). 
If desired, the pi+’ could now be eliminated from 9:+’ and 9: + ’ by means of 

Eq. (14). Then 9:+i and 9; + ’ would become functions of the quantities Aw, alone, 
and Eq. (12) would represent a system of only Nes equations in the Neq unknowns 
Am,, For our purposes, however, it will be more convenient to retain both Eqs. (12) 
and (14). 

Since Eqs. (12) and (14) constitute a coupled nonlinear equation system, it is 
evident that an iterative procedure will be required for their solution. Let the iteration 
index be V, which will be displayed as a superscipt in parentheses. The value of Aw, 
on iteration v is then Awj”). According to Eq. (14), the corresponding value of & is 

&’ = p;, + Mk c (bks - aks) Awl”‘. 
s 

The initial values for the iteration procedure are 

A”(O) = s 0 9 
pp’ - 

-6k. 

(15) 

(16) 

It is convenient to formulate the iteration scheme in terms of the changes in the 
quantities Aw, and pk from one iteration to the next. These changes are given by 

&&’ E A&d _ A&- 1) 
s s 3 (17) 

dpp’ z pp’ - pp-” = Mk c (bks - uks) &B:“‘, 
s 

W-9 

where Eq. (15) has been used. The iteration scheme is determined by specifying how 
Gwju) is to be calculated. 

The most obvious choice of an iteration scheme would be the Newton-Raphson 
method. Unfortunately, this method requires the inversion of a square matrix of order 
Neg on every iteration. In addition, the Newton-Raphson method is susceptible to 
large overshoots in the vicinity of the extrema of &%‘$ - 9,. For these reasons, we 
have developed a new quadratic iteration scheme. 

The quadratic iteration scheme utilizes intermediate species densities that have 
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been updated due to all the equilibrium reactions on previous iterations and all 
reactions preceding reaction s on the current iteration. These intermediate species 
densities are given by 

s-1 
p&, s) = pp- l’ + Mk c (bks - Ukr) dap, (19) 

.%=I 

where z is a dummy s index. (It is not necessary to explicitly code Eq. (19) into a 
computer program, however, since if pk is evaluated as a running sum then J+(v, s) is 
simply the “current” value of pk just prior to the calculation of 6wj”).) The 
corresponding current values of 9, and SS are given by 

(21) 

and the corresponding deviation of reaction s from equilibrium is 

D, = K;( T”) gs - 9s. (22) 

The iteration scheme is based on the intuitive idea that Su$’ should attempt to 
unilaterally reduce the deviation from equilibrium of reaction s from its current value 
of D, to zero. The coupling between the equilibrium reactions (i.e., the fact that the 
other reactions may disturb the equilibrium of reaction s) is ignored in computing 
each 6wj”‘. However, this coupling is implicitly taken into account by the iteration 
procedure as a whole, and the final converged solution is therefore fully coupled. 

The species densities resulting from 6wj”’ are simply 

p&, s + l) = pkh s, + M,(b,, - uks) 6wj”‘* (23) 

The corresponding values of 9, and gS are obtained by replacing pk with pk(v, s + 1) 
in Eqs. (7) and (8), and are functions of 6wj”’ according to Eq. (23). These functional 
relations will be indicated by the notation YR(Soj”‘) and ~F@o$“). We want to 
determine 6~~“’ so that 

K;(F) S’@o$“) = Ys(&uj”‘). (24) 

However, in the general case, S, and A?S are polynomials of arbitrary orders in &$‘), 
and the exact solution of Eq. (24) is not an appealing prospect. We shall therefore 
approximate 9S and Ss, by quadratic functions of Bwjv); Eq. (24) then becomes a 
quadratic equation in 806y), and can be solved explicitly. Thus we write 

9,(x) z &l + a,x + A$), (25) 

Ss(x) z &( 1 + &x +%,x2), (26) 
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where x is a dummy argument representing &$), and we have made use of the fact 
that 9, and 9s reduce to ys and .z%~, respectively, when &I~“) = 0. Of course, if 
reaction s is of second or lower order then Eqs. (25) and (26) will be exact rather 
than approximate. 

The coefficients a, and #I, will be determined by requiring the derivatives aS,(x)/ax 
and &Z&x)/L?x to be correct at x = 0. Therefore 

1 aLp,w 
as=3y ax 

= 8 ln ,P,(x) 
x=0 ax ' x=0 

1 82&) a In 9&) 
bs=x ax x=o= ax * x=0 

(27) 

P-9 

Evaluating the indicated derivatives in a straightforward fashion, we find that 

as = c Mk@ks - Uks) bks/Pkh s>, (29) 
k 

& = c Mk@ks - Qks) uks/pk(v, s)* 
k 

The coeffkients A, and B, could be evaluated in a similar way by matching the 
second derivatives at x = 0, but we prefer an alternative prescription that brings in 
information from a wider range of x. The information that we want to utilize is that if 
&I$) is too large or too small at least one of the species densities will be driven 
negative. There is thus a critical upper value of &@, call it &B~~‘, at which 9s goes 
to zero. Similarly, there is a critical lower value &I~‘” at which 9, goes to zero. 
These values are readily found to be 

(31) 

We now determine A, by requiring the approximate 9,(x) given by Eq. (25) to vanish 
at x = &$““. This yields 

A, = -( 1 + a, &iJ;‘“)/(&O;i”)z. (33) 

Similarly, the requirement that the approximate LZ’~(X) given by Eq. (26) vanish at 
x = Bw~ax yields 

B, = -( 1 + 8, &u~~~)/(&$‘~~)? (34) 

Substitution of Eqs. (25) and (26) into Eq. (24) yields 

D, + E,x + Fsx2 = 0, (35) 
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where D, is given by Eq. (22) and 

E, = K$T gsP, - *as, (36) 

F, = Ki(7”‘) &B, - psA,. (37) 

The solutions of Eq. (35) are 

x = hj” = [-Es f (Ef - 4D,F,)“*]/2Fs. (38) 

The sign ambiguity may be resolved by requiring 6w, to remain finite as F, -+ 0. For 
this to occur, the sign chosen must be the same as the sign of E,. One readily verifies 
that E, < 0; therefore the negative sign must be taken, and we obtain 

6wj”’ = -[Es + (Et - 4D,FJ1”]/2F,. 

Equation (39) is our basic formula for 6w, (“). However, it must be supplemented 
with prescriptions for handling certain special cases that may arise. First of all, we 
cannot allow 6oj”’ to be greater than Bw~Bx or smaller than 6~~‘“. Actually we insert 
a safety factor of 0.9 for good measure, so if Eq. (39) yields a value of 6oj”’ that 
exceeds 0.9&c~ax we set SW:) = 0.96wr”“. Similarly, if Eq. (39) gives a 6wj”’ less 
than 0.9&$““, we set 6oj”’ = 0.9&c:‘“. 

It is clear physically that 6wj”’ must have the same sign as D, for the reaction to 
be driven toward equilibrium. Therefore, if Eq. (39) yields a 6wj”’ that differs in sign 
from D,, 6wj”’ is set equal to zero. 

Equation (39) breaks down if F, = 0 or if 4D,F, > Ef . If either of these conditions 
occurs, we revert to the linear relaxation formula obtained by taking the limit F, + 0, 
namely 

6wl”’ = -D,/E,, (40) 

which incidentally is the formula corresponding to Newtonian iteration on the 
isolated reactions. Since E, < 0, 6wj”’ has the correct sign. 

This completes the specification of our iteration scheme. Since it ignores the 
coupling between equilibrium reactions in computing Bwi”), it converges most rapidly 
when the equilibrium reactions are chosen to be as nearly uncoupled as possible. This 
can frequently be achieved by replacing strongly coupled reactions with appropriate 
linear combinations of reactions, as illustrated in the next section. Depending on the 
way in which the equilibrium reactions are coupled, the rate of convergence may also 
depend on the sequential ordering of the reactions, since on a given iteration the pk 
are updated due to each reaction before proceeding to the next reaction. The reactions 
may be coupled in an almost infinite variety of ways, and we have therefore made no 
attempt to formulate general rules for the optimal ordering of the reactions. In 
particular cases, however, it may be possible to identify the best ordering by 
inspection. 
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IV. SAMPLE CALCULATION 

In this section we present some results obtained from the present method in a 
numerical simulation of the compression and power strokes in an internal combustion 
engine cylinder. The calculation was performed with the CONCHAS computer code 
[4], in which the present method has been incorporated as a modular subroutine. 
CONCHAS is an arbitrary Lagrangian-Eulerian (ALE) finite-difference code [5], in 
which the mesh cells are arbitrary quadrilaterals and the mesh points may move in an 
arbitrarily specified manner. The latter capability allows a straightforward represen- 
tation of the moving piston. 

The geometry of the engine cylinder is shown in Fig. 1. The cylinder is axisym- 
metric and the piston is cupped. The calculation is two-dimensional; the plane of 
calculation is a typical plane containing the symmetry axis. The fluid velocity 
includes a swirling component about the axis as well as the two components in the 
plane of calculation. The condition of axial symmetry implies that all dependent 
variables, including the swirl velocity, are independent of a rotation about the axis. 
The symmetry axis is a free slip boundary, while no-slip conditions are imposed at all 
other boundaries. All the boundaries are adiabatic. 

Thermodynamic quantities (such as equilibrium constants and species internal 
energies as functions of temperature) were obtained from the JANAF tables [6]. The 
calculation includes 12 chemical species, among which occur three kinetic reactions 

I Cylinder Head 

FIG. 1. Schematic of engine cylinder geometry. 
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and six equilibrium reactions. The chemical species are CsHls, O,, 0, N,, N, H,, H, 
CO,, CO, H,O, OH, and NO. The kinetic reactions are 

2C,H,8 + 250, + 16C0, + 18H,O, 

N+O,F!NO+O, 

O+N,F!NO+N. 

(a) 

(b) 

(cl 

Reaction (a) is a single-step (global) octane oxidation reaction, and reactions (b) and 
(c) represent the simplified Zel’dovich mechanism for NO production. 

The six equilibrium reactions basically represent the dissociation of 0,) N,, H,, 
CO,, H, 0, and OH. It is conventional to write such equilibrium reactions in such a 
way that they represent the formation of chemical compounds from elements in their 
standard states. According to this convention, our six equilibrium reactions would be 
taken to be 

022 20, W 

N, 2 2N, (4 
Hz 2 24 (9 

2c0, i? 2co + 0,) 63) 

2H,OF!2H,+O,, (h) 

20Hi? H, + 0,. (9 

Here CO is considered an “elementary” constituent of CO,, since it is very stable 
under conditions of present interest. 

Reactions (d)-(i) are a perfectly legitimate set of equilibrium reactions for the 
problem under consideration. However, they suffer from the disadvantage that 
reactions (h) and (i) are very strongly coupled, which retards convergence of the 
iteration procedure described in Section III. The strong coupling results from the fact 
that, at moderate temperatures and in the presence of reasonable amounts of O,, the 
equilibrium of reaction (i) lies far to the left; that is, the amount of H, present is 
much less than the amount of OH. This means that almost all of the H, produced by 
reaction (h) will subsequently have to be converted into OH by reaction (i). It is clear 
that it would be much better to let H,O dissociate directly into OH and O,, thereby 
eliminating the middleman, so to speak. Accordingly, we replace reaction (h) by the 
appropriate linear combination of reactions (h) and (i), namely, reaction (h) minus 
twice reaction (i): 

2H, 0 + O,z 40H. (h’) 

With reaction (h) replaced by reaction (h’), the system of equilibrium reactions 
becomes weakly coupled and the iteration procedure of Section III converges rapidly. 
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T 

NO 0 

FIG. 2. Contour plots of temperature (Z’) and mass fractions of fuel (CsH,& NO, and 0 at 6O after 
top dead center. 

In any particular application of the present method, it will be advantageous and 
possibly essential to select the equilibrium reactions to be as weakly coupled as 
possible. This involves taking appropriate linear combinations of the basic formation 
reactions as illustrated above. Notice that the best choice of reactions does not 
necessarily correspond to the physical reaction mechanism; it is rather a function of 
which species are present in the largest amounts in the temperature and concentration 
ranges of interest. 

The initial charge in the engine cylinder is homogeneous with an equivalence ratio 
(fuel-air ratio relative to stoichiometric) of 0.95. The charge is initially swirling 
about the axis at 8000 RPM. The engine speed is 1600 RPM. The calculation begins 
at bottom dead center, just prior to the compression stroke. Ignition occurs at 17” 
before top dead center. 

Figure 2 shows contour plots of temperature and the mass fractions of fuel 
(C,H,& NO, and 0 at 6” after top dead center, which is about 3 msec after ignition. 
The piston is beginning to move downward again, causing gas to be pulled back into 
the “squish” region between the top of the piston and the cylinder head. This gas flow 
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is responsible for the bump in the contours just below the lip of the piston cup. The 
flame front is located where the temperature contours are closely spaced, and 
delineates the burned region. This region is elongated along the axis because of the 
centrifugal buoyancy effect. Note that the fuel contours are nearly identical to the 
isotherms, because the spent fuel is responsible for the temperature rise at each point. 
The dissociation reactions (d)-(i) have the effect of reducing the temperature of the 
burned material behind the flame. These reactions are negligible in the unburned 
material ahead of the flame. Consequently, the steepest gradients in atomic concen- 
trations will also occur in the vicinity of the flame front, as is observed in the 0 
contours in Fig. 2. NO is produced kinetically by the simplified Zel’dovich 
mechanism, which proceeds slowly compared to the other reactions in the system. 
Therefore the greatest NO concentrations tend to be found in the regions that have 
been hottest for the longest time, as is qualitatively apparent from a comparison of 
the isotherms and NO contours. 

Figure 3 shows the total mass of NO in the cylinder as a function of time. The 
curve labeled “swirl” is from the present calculation, while the curve labeled “no 
swirl” is from a similar calculation in which the initial charge was quiescent rather 
than swirling. Prior to 20 msec a small amount of NO in the cylinder is left from the 
previous cycle. The rapid rise corresponds to the rapid phase of octane combustion. 
The curve levels off after 24 msec. All the fuel is consumed and expansion of the gas 
by withdraw1 of the piston cools the fluid, stopping the NO reactions. As the figure 
shows, NO production was significantly reduced in the absence of swirl. Because NO 
produced by automotive engines is a significant component of air pollution, this kind 
of numerical simulation has definite potential for helping engineers design cleaner 
engines. 

6 

5- 

I- 

O 1 1 1 1 1 1 1 1 
0 4 8 12 16 M 24 26 

Time (ms) 

FIG. 3. Total NO mass in the cylinder versus time. 
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